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The quantum approximate optimization algorithm (QAOA) transforms a simple many-qubit wave function
into one that encodes a solution to a difficult classical optimization problem. It does this by optimizing the
schedule according to which two unitary operators are alternately applied to the qubits. In this paper, the QAOA
is modified by updating the operators themselves to include local fields, using information from the measured
wave function at the end of one iteration step to improve the operators at later steps. It is shown by numerical
simulation on MaxCut problems that, for a fixed accuracy, this procedure decreases the runtime of QAOA very
substantially. This improvement appears to increase with the problem size. Our method requires essentially the
same number of quantum gates per optimization step as the standard QAOA, and no additional measurements.
This modified algorithm enhances the prospects for quantum advantage for certain optimization problems.
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I. INTRODUCTION

We are in the era of noisy intermediate-scale quantum
(NISQ) devices [1]. This motivates the development of vari-
ational quantum algorithms (VQAs) that use a sequence of
relatively short quantum circuits with parameters that are
iteratively updated by a classical optimizer [2–4]. VQAs
have been designed for a wide range of problems, such
as ground state and excited state preparation [5–9], quan-
tum state diagonalization [10,11], quantum data compression
[12–14], quantum fidelity estimation [15,16], and quantum
compiling [17].

The quantum approximate optimization algorithm
(QAOA) is the leading example of a VQA for combinatorial
optimization [18]. The repeated quantum evolution depends
on classical parameters that are iteratively updated. The
final result is a calculated value for the cost function and a
corresponding quantum state that encodes an approximate
solution to a classical optimization problem. The QAOA is
considered to be a good candidate for an algorithm that will be
superior to classical algorithms reasonably soon [19], so many
studies have focused on the experimental demonstrations for
the QAOA in different physical systems [20–26]. However,
it is generally thought that the standard QAOA will not be
competitive with established classical methods until a time
when quantum machines are considerably larger than they are
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today [27,28]. Thus there is intense activity to improve the
QAOA [29–36], which would bring this time closer. That is
also the goal of the present work.

The QAOA starts the quantum computer in the ground state
of the mixing Hamiltonian H s

M and then alternately applies the
unitary operators exp(−iγkHC ) and exp(−iβkH s

M ), where HC

is the problem Hamiltonian whose ground state is sought [18].
At level p, {γk}p

k=1 and {βk}p
k=1 are two sets of parameters that

fix the schedule of the evolution. At each iteration, {γk}p
k=1

and {βk}p
k=1 are improved by measuring HC . (Henceforth we

drop the subscripts and superscripts on {γk}p
k=1 and the other

parameter sets.)
Simulations on classical computers have shown some im-

pressive results for the QAOA as applied to MaxCut [35,37].
The authors of Ref. [35] produced an efficient iterative scheme
that runs in time O(poly p) and that approached the known
solutions with high accuracy. They demonstrated the superior-
ity of QAOA over standard quantum annealing—the classical
optimization effectively isolates the small gap events that
plague annealers and the Quantum Adiabatic Algorithm and
substantially neutralizes them, though it should be noted that
modifications of quantum annealing can do this for certain
special problems [38,39].

Here we introduce a method that can greatly accelerate
convergence of the QAOA through the use of adaptive bias
fields in the mixing Hamiltonian (ab-QAOA). Varying the
ansatz operator in the VQA [40,41] or QAOA [36,42] has been
proposed before, but the ab-QAOA approach has two critical
differences from earlier protocols. The first is that previous
modifications of the QAOA do not use all the information
available at the end of a step. One can use the energy mea-
surement in more than one way to guide the system toward its
ground state. The second is that local fields are introduced in
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H ab
M as was done previously in quantum annealing [43] and the

starting state is reinitialized accordingly. Some methods such
as FALQON [44,45] also use measurements to update the
operators, but the operators applied are completely different.

Mean field theory is the usual starting point for the inves-
tigation of ordered spin systems. It can also be very useful
for certain Ising spin glass systems, which is the case of
interest here. The prime example is the Parisi solution of
the Sherrington-Kirkpatrick model [46]. Hence it is natural
to include elements of mean field theory in any search for a
ground state. Thus the overall philosophy of our approach is
to make a marriage between mean field theory and an iterative
variational procedure. There are four reasons to suppose this
will improve the QAOA.

(i) The optimization is guided not only by the energy but
also by the local magnetization, so additional information
available from the measurements is used.

(ii) Mean field theory is often the best starting point for
a variational calculation on a system with many degrees of
freedom.

(iii) For any algorithm based fundamentally on the adia-
batic theorem, the shorter the distance in Hilbert space from
the starting wave function final correct ground state, the better
the chances of success [43]. Our procedure includes a modifi-
cation of the wave function at each stage of the iteration.

(iv) For any problem whose solution is one of the compu-
tational basis vectors (an Ising problem, in condensed matter
theory language), a local field term in the z direction will steer
the solution in a good candidate direction, due to the fact that
the solution lies in the set of ground states of some local-field
Hamiltonian.

Bias fields have previously been introduced in a quan-
tum adiabatic algorithm to improve accuracy (defined below)
[43], but in that reference the procedure was not adaptive.
This leads us to call our method the “adaptive bias QAOA”
(ab-QAOA). The use of adaptive bias fields improves both
the accuracy of the solution and its fidelity, i.e., the overlap
between the computed final state and the actual target state.
There have been some adaptive QAOA methods, such as the
operator pool method [36], in that the mixing Hamiltonian is
updated, but reinitialization has not been employed in the past.

This paper is organized as follows. In Sec. II, we give a
detailed description of the MaxCut problem, the QAOA, and
the ab-QAOA. In Sec. III, the relative performances of the
QAOA and the ab-QAOA are computed and analyzed. We also
investigate in detail the effects of the bias fields in the ab-
QAOA. The conclusion of the paper is given in Sec. IV.

II. ALGORITHM DETAILS

A. MaxCut problem

The performance of a heuristic algorithm must be judged
against competitors. In what follows, we compare the ab-
QAOA against the standard QAOA (henceforth referred to
simply as QAOA) described above. The QAOA has already
been compared to classical algorithms [37], so this way of
proceeding indirectly benchmarks the QAOA against classi-
cal competitors as well. Following Ref. [18], we define the
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FIG. 1. MaxCut problem on an unweighted 3-regular 6-vertex
graph. Different colors give the different states |0〉 and |1〉, and they
represent the two different subsets V1 and V2 of the vertex set. The
problem is to find the division of the vertices that maximizes the
number of edges connecting the two subsets. The dashed edges in
the figure represent the cut in this case.

accuracy as

r = Eopt (ψ f )

Emax(ψmax)
, (1)

where Eopt (ψ f ) is the expectation value of the problem
Hamiltonian in the state ψ f produced by the algorithm, and
Emax(ψmax) is the value in the optimum state ψmax.

The problem we use for benchmarking ab-QAOA is Max-
Cut, a canonical problem in graph theory [47]. Let an
undirected graph be denoted by G(V, E ), where V is the n-
vertex set and E is the edge set. The edges may or may not
be assigned weights. If they are, then the weights are chosen
uniformly at random from the interval [0,1]. In the unweighted
version, we wish to partition V into two subsets V1,V2 in such
a way as to make the number of edges connecting V1 and V2

as large as possible. In the weighted version, the total weight
of the partition is maximized.

We convert MaxCut to an n-vertex Ising model as follows.
Define a Pauli matrix Zj to act on the jth vertex and use the
eigenstates |0〉, |1〉 of the Zj to represent V1 and V2. Thus,
in operator language, the MaxCut problem Hamiltonian for
n qubits is H = E0 − HC , where

HC =
∑

〈v1v2〉∈E

ωv1v2

2
Zv1 Zv2 . (2)

The constant E0 = ∑
ωv1v2/2 plays no role in the partition of

the graph, but it enters the calculations of the accuracy r as
defined above. The ground state has an obvious Z2 symmetry.
The ground state of HC in Eq. (2) encodes the solutions to the
original MaxCut problems. We consider weighted 3-regular
graphs with ωv1v2 chosen uniformly at random in [0,1] (w3r
graphs), and unweighted 3-regular graphs with ωv1v2 = 1 (u3r
graphs). An example of an unweighted graph is shown in
Fig. 1.

The choice of problems is the same as in Ref. [35]. Clas-
sically, finding a solution where r > 16/17 ≈ 0.9412 on all
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FIG. 2. Comparison of the accuracy (top panel) and infidelity
(bottom panel) of the QAOA (solid lines) to the accuracy and infi-
delity of ab-QAOA (dashed lines) for n = 8, 12, 16 for w3r graphs.
Each point is an average over 40 randomly chosen graphs. In (a) the
accuracy is plotted as a function of the level p. The horizontal
dashed line represents r∗ = 0.99. Even for moderate values of p,
the accuracy of ab-QAOA is an order of magnitude better than that
of QAOA. In (b) the infidelity in QAOA and ab-QAOA is plotted
as a function of p. Again, the improvement is nearly an order of
magnitude at moderate p. The fits are described in the text. The error
bars are standard deviations.

graphs is NP-hard [48,49], but there is a polynomial time clas-
sical algorithm that provably finds answers with r = 0.8785
[50].

B. QAOA and ab-QAOA

The quantum part of the standard QAOA is the repeated
computation of a quantity |ψ s

f 〉 according to

∣∣ψ s
f

〉 =
p∏

k=1

e−iβk H s
M e−iγk HC

∣∣ψ s
0

〉
, (3)

with H s
M = ∑

j Xj , where Xj is the Pauli X matrix that acts
on the jth qubit. |ψ s

0〉 is the ground state of H s
M . The oper-

ators with subscript k are on the left of those with k − 1 in∏p
k=1 · · · . The classical part is the iterative optimization of

{γk} and {βk}.

The ab-QAOA algorithm modifies the QAOA algorithm in
the following ways:

∣∣ψab
f

〉 =
p∏

k=1

e−iβkH ab
M ({h j})e−iγk HC

∣∣ψab
0 ({h j})

〉
, (4)

where the mixing Hamiltonian is H ab
M = ∑

j (Xj − h jZ j ) and
the starting wave function |ψab

0 〉 is the ground state of the
former. There are n additional parameters {hj} that comprise
the local fields and enter both the H ab

M and |ψab
0 〉. They are not

optimized, but rather updated according to the prescription

h j → h j − �
(
h j − 〈

ψab
f |Zj |ψab

f

〉)
. (5)

� is the learning rate, which we took to be � = 1.1, and
〈ψab

f |Zj |ψab
f 〉 can be obtained from the measurement of ZZ

terms in HC . This is one step of the learning process. Thus
both H ab

M and |ψab
0 〉 are updated (learned) along with the

usual QAOA schedule parameters {γk} and {βk} (which are
optimized in the usual way at each iteration). The details of
ab-QAOA in level p can be found in the following.

Algorithm: ab-QAOA in level p

• Initialization
1. Initialize two p-element sets {ul} and {vl} that are used to

update {γk} and {βk}.
2. Initialize the n-element local field set {hj}.
3. Set a learning rate �, a global parameter defined in Step 6 in

the optimization procedure.
• Optimization

1. Set {γk} and {βk} according to the discrete Fourier
transforms of {ul} and {vl}.

2. Construct the mixing Hamiltonian with bias fields:

H ab
M ({hj}) =

n∑
j=1

(Xj − hjZ j ).

3. Prepare |ψ ab
0 〉, the product ground state of H ab

M ({hj}).
4. Compute the final state for this step:∣∣ψ ab

f

〉 =
p∏

k=1
e−iβk Hab

M ({h j })e−iγk HC
∣∣ψ ab

0

〉
.

5. Using projective measurements, obtain the gradients of the
energy:
∂

〈
ψab

f |HC |ψab
f

〉
∂ �u and

∂

〈
ψab

f |HC |ψab
f

〉
∂�v

and the quantity
δhj = hj − 〈

ψ ab
f |Zj |ψ ab

f

〉
.

6. Update {vl}, {ul} using the Adam gradient-based stochastic
optimization algorithm [51]. Update {hj} with learning rate
� according to hj → hj − �δhj . The update of {hj} feeds
back into both the mixing Hamiltonian in Step 2 and the
wave function in Step 3.

7. Measure the expectation value of the energy/cost function
E ({ul}, {vl}, {hj}) = 〈ψ ab

f |HC |ψ ab
f 〉.

8. Repeat steps 1–7 until convergence with a fixed tolerance.
Output the final energy Ef ({ul}, {vl}, {hj}), and a
measurement of |ψ ab

f 〉 in the computational basis. Allowing
for the constant term, the optimized energy is
E opt

p = E0 − Ef .

In addition to the optimization of {γk} and {βk}, another
important issue is the choice of the initial {γk} and {βk} at the
beginning of the optimization. For this, we adapt the Fourier
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strategy [35], as described in Appendix A. The main idea is
not to directly optimize {γk} and {βk}, but rather to optimize
their Fourier components {ul} and {vl}, given by

γk =
p∑

l=1

ul sin

[(
l − 1

2

)(
k − 1

2

)
π

p

]
,

βk =
p∑

l=1

vl cos

[(
l − 1

2

)(
k − 1

2

)
π

p

]
. (6)

Then the starting point in level p can be constructed from the
optimized point in level p − 1. We note that since QAOA is
the � → 0 and hj → 0 limit of the ab-QAOA, performance
guarantees for the QAOA [18,37,52] apply also to the ab-
QAOA.

III. NUMERICAL RESULTS

A. Comparison between QAOA and ab-QAOA

Our primary figure of merit is the time taken to reach a
given accuracy r∗. The choice of a target accuracy r∗ is to
some extent arbitrary. We will take r∗ = 0.99 as a value that is
attainable in numerical simulations at moderate system sizes
for the ab-QAOA and for the QAOA with reasonable extrapo-
lations. This value of r∗ also sets a goal that may be practical
for future quantum computers in the medium term, and it
exceeds the NP-hard threshold quoted above. The ratio of
computation times for the QAOA and the ab-QAOA to reach
the accuracy r∗ is then our measurement of the improvement
in the algorithm. We define p∗ as the value of the level at
which r∗ is achieved.

To understand the dependence of the runtime on the level
p, consider the optimization over a p-level output state from
either QAOA or ab-QAOA. In the gradient-based classical
optimization algorithm, O(p) gradients are necessary, and for
the calculation of each gradient, a p-level output state needs to
be prepared. Intuitively, the total quantum computation time is
O(p2), which will be analyzed rigorously in Appendix B.

Crucially, there is no additional quantum overhead in the
ab-QAOA since no additional measurements are needed, and
the number of gates for the state preparation is the same as
in the QAOA. There is classical overhead due to the larger
number of parameters. However, this cost turns out to be
very small due to the fact that the only really important addi-
tional parameter is the bias field. This field is not optimized
over, but rather simply fed back at each iteration, and the
total number of these fields is only n, the number of qubits.
These cost issues are treated in more detail in Appendix B.
Given these considerations, the speedup is best defined as S =
(p∗

QAOA/p∗
ab−QAOA)2. We will also plot the infidelity 1 − F =

1 − ∑
α |〈ψ s(ab)

f |ψα
max〉|2 to compare the two methods (where

α labels the degeneracy), since this quantity gives additional
physical insight.

The results of the comparison of the ab-QAOA and QAOA
algorithms for w3r graphs with n = 8, 12, 16 are shown in
log-linear plots in Figs. 2(a) and 2(b) for 1 − r and 1 − F ,
respectively, while the results for n = 10, 14, 18 are given in
Appendix C. The convergence to the solution is much better
in the ab-QAOA overall, in some cases by more than an order

of magnitude. The improvement at small p is particularly
striking. This is important, since only rather small values of
p are likely to be accessible in near-term quantum machines
[20–26].

It is surprising at first glance that the computed accuracy
is not always significantly better for smaller graphs, as seen
in Fig. 2(a) for p = 7, 8. This is due to the larger error bars
at larger p, but the bars are magnified by the log scale. This
inversion is discussed in more detail in Appendix C, where
more extensive calculations are also presented.

To calculate the speedup, we need p∗. However, in the
QAOA for larger n values, the algorithm does not achieve
the desired accuracy r∗ for p � 8. Thus some extrapolation
is required, and this means choosing some fitting functions
for r(p), choosing the point where the curve intersects r∗, and
rounding p at that point to the nearest integer. We fit both the
w3r results and the u3r results in the standard QAOA using
the purely empirical forms in [35].

The fits are surprisingly good. We have no good expla-
nation for this at this point, but high-quality empirical fits
often lead to later insights. We have also performed a scaling
analysis, given in Appendix D, which shows that the points
collapse onto a straight line in a rescaled plot. For the QAOA
and w3r graphs, the fitting functions are

1 − r = exp(−
√

p/p0 + c),

1 − F = exp(−p/p0 + c). (7)

The forms for the ab-QAOA for w3r graphs are slightly dif-
ferent, though we do not know at this point if the difference
in the forms has any fundamental significance. The functions
are

1 − r = exp(−
√

p/p0 + c),

1 − F = exp(−
√

p/p0 + c). (8)

The fitting parameters p0, c and the fitting errors are tabulated
in Appendix D.

For the w3r results, the fitting functions work very well,
as can be seen in Fig. 2. The upward curvature in the ab-
QAOA fits is due to the fact that at higher p we are close
to converging to the actual solution. It is notable that for the
ab-QAOA, the curvature does not increase very rapidly with
p, indicating that even when the ab-QAOA is quite close to the
actual result, improvement still continues. The results for the
relative infidelity of the QAOA and the ab-QAOA are nearly
as impressive as those for the accuracy; the gap between the
two methods is still clearly evident. In the ab-QAOA, 1 − r is
nearly independent of n, while 1 − F changes noticeably. This
is an indication that the energy spectrum of weighted graphs
differs from that of unweighted graphs: the ground state for
weighted graphs is more likely to be nearly degenerate with
the low-lying excited states. This is shown by numerical cal-
culation of the gap between the ground state and the first
excited state, as shown in Fig. 3 for both types of graph.

The results for the u3r graphs with n = 8, 12, 16 are shown
in Fig. 4 and the results for n = 10, 14, 18 are given in
Appendix C. Again, the gap between the QAOA and the
ab-QAOA is clearly evident. The initial convergence at small
p is very fast for the ab-QAOA. Indeed, if the figure of merit
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FIG. 3. The gap between the ground state and the first excited
state of unweighted or weighted graphs for n = 8, 10, 12, 14, 16, 18.
Each point is the average over 1000 graphs except n = 8 u3r graphs,
where there are only five different nonisomorphic graphs. The error
bars are standard deviations.

for the algorithms is taken as the accuracy at some fixed small
p, the difference in performance for u3r graphs would exceed
that for w3r graphs.

For u3r graphs, the fitting functions for QAOA are straight
lines on the log-linear plots in Figs. 4(a) and 4(b):

1 − r = exp(−p/p0 + c),

1 − F = exp(−p/p0 + c), (9)

while for ab-QAOA, the fitting functions are the same as those
in w3r graphs, those in Eq. (8). Again, p0 and c are fitting
parameters that are given in Appendix D with fitting errors.
The fits are generally good, with two slight exceptions. The
first is when n = 8, for which there are few graphs so that little
averaging can be performed. The second is the ab-QAOA at
large p, where there is additional curvature that is not captured
by the fits. In this region, the accuracy is so high that the
curves must flatten out, and this introduces some finite-size
error. Interestingly, the convergence rate of the infidelity of the
ab-QAOA for u3r wave functions is considerably faster than
that for the w3r case, and 1 − F does not depend so strongly
on n. This is the main difference in our results for the w3r and
u3r graphs. We believe that this is due to the fact that for the
u3r graphs, the ground state is well-separated in energy from
the low-lying excited states relative to the w3r graphs. This
follows from the fact that the weight parameters in HC for the
u3r graphs are integers, but those in the w3r graphs are not.

The basic figure of merit for the ab-QAOA is S(n), the
speedup as a function of the number of vertices. This is plotted
in Fig. 5. We see first of all that the improvement offered by
the ab-QAOA is certainly not limited to very small graphs.
If S(n) = O(na), where a > 0, then the ab-QAOA gives a
polynomial speedup over QAOA. If a = 0, then we can only
hope for a constant speedup (which might still be of practical
importance, of course). The curve in Fig. 5 shows no sign
of saturating up to n = 18. The numerical results give evi-
dence that the ab-QAOA gives a significant speed-up for the
solution of the MaxCut problem compared to other classical-

FIG. 4. Comparison of the accuracy (top panel) and the infidelity
(bottom panel) for QAOA (solid lines) and ab-QAOA (dashed lines)
for n = 8, 12, 16 for u3r graphs. The number of realizations is 40
for graphs with 10 or more vertices. For n = 8, there are only five
different nonisomorphic u3r graphs, and we average over them.
The error bars are standard deviations. In (a) the accuracies for
QAOA and ab-QAOA are plotted vs p. The horizontal dashed line
again represents r∗ = 0.99. By comparing with Fig. 2, we find that
the accuracy for both algorithms is slightly better when applied to
unweighted graphs. The improvement of ab-QAOA over QAOA is
very marked at even smaller p. In (b) the infidelities for QAOA and
ab-QAOA are plotted as a function of p, now for unweighted graphs.
Again, the improvement is clear at quite small p, and it continues to
improve for all p. The fits are described in the text.

quantum hybrid optimization algorithms. We expect that the
ab-QAOA can also be applied to other classical combinatorial
optimization algorithms that can be mapped into classical
Ising models, such as partitioning problems, covering and
packing problems, and so on [53,54], since then the local field
idea can be suitably modified. For problems that lack such a
mapping, such as finding the ground states of molecules [11],
the applicability of the ab-QAOA is much less clear.

B. Effect of bias fields for level p = 1

In this section, we illustrate the effect of bias fields for the
smallest nontrivial graphs (the first graph in Fig. 6) and only
at level p = 1. This isolates the effect of having these fields
in the mixing Hamiltonian. We simply repeat the evolution,
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FIG. 5. Speedup S(n) of ab-QAOA over standard QAOA, using
an accuracy r∗ = 0.99 as a criterion. The corresponding p∗ values
are given in Appendix E.

measuring 〈HC〉 at the end of each step, and then we update
the bias fields in the mixing Hamiltonian and the starting wave
function using the prescription given above. Of course this
leads to lower fidelities than for the full algorithm presented
in Sec. III A.

In the ab-QAOA, the mixing Hamiltonian with bias field
is

H ab
M ({h j}) =

n∑
j=1

(Xj − h jZ j ). (10)

Once we know one product ground state |ψα
max〉 of the Max-

Cut problem Hamiltonian in Eq. (2) (whose ground states are
always degenerate and α is used to eliminate this degeneracy),
then we have the expectation value of each Zj . If h j is fixed
to 〈ψα

max|Zj |ψα
max〉 in our ab-QAOA, then |ψab

0 〉 is closer to
|ψα

max〉 than |−〉⊗n (the starting state of the standard QAOA),
leading to a higher accuracy for the ab-QAOA.

The bias field parameter h j is updated according to

h j → h j − �(h j − 〈Zj〉). (11)

This update strategy will bring hj closer to 〈ψα
max|Zj |ψα

max〉
and the starting state |ψab

0 〉 closer to |ψα
max〉. In realistic cal-

culations, prior knowledge of |ψα
max〉 may not be available.

It turns out that we can still find |ψα
max〉 faster than the

QAOA even without prior knowledge of |ψα
max〉, as we now

show.
To illustrate this, we calculate the fidelity∑
α |〈ψab

0 |ψα
max〉|2, where |ψab

0 〉 is the ground state of
H ab

M ({h j}) in the level-1 ab-QAOA for the first u3r graph
with eight vertices as shown in Fig. 6. The sum is over
the ground states to which ab-QAOA steers the starting

FIG. 6. All five different u3r graphs with eight vertices. These
graphs are labeled as 1, 2, . . . in sequence.

FIG. 7. The fidelity (top panel) between the target ground state
and the starting or output states for graph 1 in Fig. 6 using level-1
QAOA and level-1 ab-QAOA, and the corresponding ab-QAOA bias
fields (bottom panel), all plotted against the number of iterations. The
target state is |ψα

max〉 = |00101101〉. The fidelities show sudden jumps
that correspond to rapid changes in the bias fields of the ab-QAOA.
The fields steer the starting state to the desired output state. h1, h2, h4,
and h7 are greater than 0 at the end of the optimization, corresponding
to the form of |ψα

max〉. The ranges A, B, C, and D are discussed in the
text.

state. For comparison, we also calculate
∑

α |〈ψ s
0|ψα

max〉|2,∑
α |〈ψ s

f |ψα
max〉|2, and

∑
α |〈ψab

f |ψα
max〉|2 in Fig. 7, where

|ψ s
0〉 is the starting state of the standard QAOA, |ψ s

f 〉 is the
output state produced by the QAOA, and |ψab

f 〉 is the output
state produced by the ab-QAOA.

As shown in Fig. 7(a), it is clear that the bias field will
bring the starting state closer to the ground state of HC . There
are some iterations for which both the starting state and output
state curves of ab-QAOA grow rapidly, and that is when the
bias field brings the starting state |ψab

0 〉 close to the ground
states. The operations exp(−iβkH ab

M ) and exp(−iγkHc) bring
|ψab

f 〉 closer to the target states than |ψab
0 〉. Note that the

fidelity approaches 0.5 for the output state of the ab-QAOA.
This is bounded above by the ab-QAOA driven by fixed bias
fields h j = 〈ψα

max|Zj |ψα
max〉 with � = 0.

To better investigate how the bias fields work, we also plot
{h j} of graph 1 from level 1 ab-QAOA in the optimization
iterations, as shown in Fig. 7(b). There are four regions in
Fig. 7(b). In region A, all h j decrease to 0 quickly in the first
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FIG. 8. The energy landscape of graph 1 as a function of the variational parameters u1 and v1 for increasing number of iterations. The
0th (top left), 50th (top right), 95th (bottom left), and final (bottom right) iterations that are shown belong to region A, B, C, and D,
respectively. As analyzed in Ref. [35], γ1 and β1 can be restricted to [−π/2, π/2] and [−π/4, π/4], respectively, so u1 and v1 are restricted to
[−√

2π/2,
√

2π/2] and [−√
2π/4,

√
2π/4] according to Eq. (6).

five iterations. In region B, from the 5th iteration to the 80th
iteration, all h j are near 0. In region C, from about the 80th
iteration to the 100th iteration, the {h j} diverge and each h j

tries to find its true value, 〈ψα
max|Zj |ψα

max〉. In region D, in the
last half of the optimization, the value of each hj does not
change. The behavior of the fidelity in Fig. 7(a) is related to
{h j} in Fig. 7(b). The divergence of {h j} from 0 implies a sharp
rise in the fidelity.

For each of these four regions, we choose four specific
points and plot the energy landscape using ab-QAOA as
shown in Fig. 8. Note that for region B, the landscape is
in close agreement with that of the QAOA since all h j are
small. In region A, due to the “wrong” bias fields, it is harder
to find the target state using ab-QAOA than the QAOA, so
the QAOA output state can be regarded as the optimal state
of ab-QAOA’s. As a result, each hj moves towards 0 fast in

level 1

best point , ,

initial points
,
,

,
,

,

,
,

,
,

,

,
,

,
,

,

best point , ,

level 

generation optimization

FIG. 9. Schematics of the outer loop of ab-QAOA. Using Eq. (A6), we generate R initial points in level p′ from the best point in level
p′ − 1. After the optimization of these R points, we get the point with the best energy. We do this procedure iteratively until the target level p.
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|0〉 Ry(θ1) • • • • Rxz(β1, h1)

|0〉 Ry(θ2) Rz(ξ12) • • Rxz(β1, h2)

|0〉 Ry(θ3) Rz(ξ23) • • Rxz(β1, h3)

|0〉 Ry(θ4) Rz(ξ34) Rz(ξ14) Rxz(β1, h4)

FIG. 10. Quantum circuit for 1-level ab-QAOA on 2-regular graphs with four vertices. ξv1v2 is the real coefficient of Zv1 Zv2 appearing in
exp(−iγ1HC ). Ry and Rz are the rotation operators around the ŷ and ẑ axis, respectively, while Rxz(β1, hj ) = exp[−iβ1(Xj − hjZ j )]. When
hj = 0, Rxz is the rotation operator around the x̂ axis. The gates in the dashed box prepare the starting state for ab-QAOA. There are 4 + 3 ×
4 + 4 = 20 gates in the circuit.

region A. In region B, although all h j are small, their effects
accumulate until the bias fields can have a significant effect on
the cost function. In region C, all hj change quickly because
of the accumulation in region B. In the updating, all hj are
getting closer to their true values, so it is easier to find the
target state in this region, which can be verified by the smaller
lowest energy in the landscape. In region D, the output energy
nearly meets the convergence criterion, and each hj finds its

true value, 〈ψα
max|Zj |ψα

max〉, so the lowest energy is smaller
than in the other regions.

IV. CONCLUSION

In this paper, we have shown how a generalization of the
QAOA, the ab-QAOA, can greatly reduce the depth of the
quantum circuit needed to solve optimization problems to a
given accuracy. The understanding of this comes partly from

FIG. 11. Iterations needed for convergence Nite in u3r graphs and w3r graphs for points generated by the above outer loop. The top left
panel is QAOA for w3r graphs, the top right panel is ab-QAOA for w3r graphs, the bottom left panel is QAOA for u3r graphs, and the bottom
right panel is ab-QAOA for w3r graphs. Nite is the average over R samples. The classical optimizer is the Adam gradient-based stochastic
optimization algorithm mentioned above. Nite is very similar for different graphs and for the two different algorithms.
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a study of the effects of the bias fields on small graphs. In
the short and medium term (NISQ era), the results presented
in Figs. 2 and 4 are the most important ones. They show
that a quantum computer with of order 20 very high-quality
logical qubits may produce impressive results at level p = 5,
a machine that may be attainable quite soon [20]. In the longer
term, we are more interested in how the performance of the ab-
QAOA scales with n. Figure 5 shows that the speedup in fact
increases as the size of the system increases, which suggests
that the ab-QAOA may still be the algorithm of choice beyond
the NISQ era.

The ability to carry out practical calculations in the NISQ
era will depend on finding algorithms that can be implemented
in circuits of relatively shallow depth, and converge quickly
to an answer. The ab-QAOA contributes to these goals, con-
verging to a desired accuracy with a computation time that
is polynomially shorter in the system size than that of the
standard QAOA.
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APPENDIX A: COMPUTATIONAL DETAILS OF THE
AB-QAOA

In this Appendix, we give further details of the Fourier
strategy proposed in [35] about how to choose the starting
points in the optimization. For a p-level QAOA, as stated in
the main text, the mixing Hamiltonian is H s

M = ∑
j Xj . The

quantum processor is initialized in |ψ s
0〉, the ground state of

H s
M . Then we alternately apply problem Hamiltonian HC and

mixing Hamiltonian H s
M to generate the final state,

∣∣ψ s
f

〉 =
p∏

k=1

e−iβk H s
M e−iγk HC

∣∣ψ s
0

〉
, (A1)

where the level p is the number of times the unitary operators
corresponding to H s

M and HC are applied to the initial state to
move it to the final state. The scheduling parameters {γk}, {βk}
in the operators are determined by optimizing

〈HC〉({γk}, {βk}) = 〈
ψ s

f |HC |ψ s
f

〉
. (A2)

FIG. 12. Comparison of the accuracy [log10(1 − r)] and infidelity [log10(1 − F )] of results for QAOA (solid lines) and ab-QAOA (dashed
lines) for n = 10, 14, 18 for w3r graphs and u3r graphs. The top row is w3r graphs, and the bottom row is u3r graphs. The horizontal dashed
line represents r∗ = 0.99. Each point is an average over 40 randomly chosen graphs. The fits are described in the main text. The error bars are
standard deviations. As in Figs. 2 and 4 in the main text, the speedup of ab-QAOA over QAOA is clearly evident. The performances of both
algorithms are slightly better in the unweighted case.
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Note that for the original QAOA [18,35], |ψ s
0〉 is |+〉⊗n,

but in our description, |ψ s
0〉 is |−〉⊗n, the ground state of H s

M .
If we denote the QAOA final state from |+〉⊗n by |ψ s+

f 〉, the

final state from |−〉⊗n by |ψ s−
f 〉, and define Z̃ = ∏

j Z j , it is
easy to prove that

|ψ s−
f ({γk}, {βk})〉 =

p∏
k=1

e−iβk H s
M e−iγk HC Z̃|+〉⊗n

= Z̃
p∏

k=1

eiβk H s
M e−iγk HC |+〉⊗n

= Z̃|ψ s+
f ({γk}, {−βk})〉. (A3)

There is no difference in the classical optimization for both
|ψ s−

f 〉 and |ψ s+
f 〉 as long as HC is a classical Ising Hamiltonian

since〈
ψ s−

f |HC |ψ s−
f

〉
({γk}, {βk}) = 〈

ψ s+
f |HC |ψ s+

f

〉
({γk}, {−βk}).

(A4)

There are two differences in the quantum part of the two
algorithms.

(i) In the p-level ab-QAOA, H ab
M contains local longi-

tudinal fields as well as the usual global transverse field,
H ab

M ({h j}) = ∑n
j=1(Xj − h jZ j ).

(ii) The wave function at the initial stage of each learning
step is chosen to be the ground state of the updated H ab

M .
Hence both the longitudinal fields in the mixing Hamilto-

nian and the “reinitialized” wave function change during the
course of the ab-QAOA algorithm.

Thus the final state of ab-QAOA is

∣∣ψab
f

〉 =
p∏

k=1

e−iβk H ab
M ({h j })e−iγkHC

∣∣ψab
0 ({h j})

〉
. (A5)

In the Fourier strategy [35], what we optimize over are {ul}
and {vl}, the Fourier components of {γk} and {βk}. To avoid
being trapped in the local optimum as far as possible, we start
the optimization from R initial points and find the point with
the best energy, as was done in Ref. [35]. To reach level p,
we start from level 1 and find the point with the best energy
from R initial points after the optimization. In level 2, R initial
points are generated by adding some random numbers to the
best point in level 1. Then repeat the optimization and initial
point generation procedure with increasing level p′ until p′ =
p.

Here, we use p to represent the target level and p′ to
represent the inner levels. The whole process from level 1
to level p including the initial points generation is the outer
loop of the algorithm, while the update of {ul}, {vl}, {h j} until
convergence for a fixed level p′ (the algorithm presented in
Sec. II B) is the inner loop of the algorithm. The same loops
are used for the QAOA except that all the h j are set to 0.

This more elaborate classical optimization is not strictly
necessary to demonstrate the advantages of the ab-QAOA
over the QAOA, but it does mean that the results can be
compared more directly with those of Ref. [35]. The sampling
parameter R was set to 10 in our calculations. We note once
more that formally the QAOA can be considered as the limit
of the ab-QAOA when h j → 0. This means that from a formal

standpoint, the ab-QAOA is guaranteed to be at least as good
as the QAOA. The detailed outer loop of the algorithm follows
and is also illustrated in Fig. 9.

Algorithm: Outer Loop from level 1 to p

1. In level 1, we generate R initial “0” points
({ul}0,s

1 , {vl}0,s
1 , {hj}0,s

1 ), where the elements of {ul}0,s
1 and {vl}0,s

1

are random numbers drawn from a uniform distribution and all
elements of {hj}0,s

1 are initialized to be 1. The subscripts refer to
the ab-QAOA level in the outer loop, and the s superscript
ranges from 1 to R representing the different initial points.
Using the algorithm in Sec. II B we get the optimal “B” point
({ul}B

1 , {vl}B
1 , {hj}B

1 ) with the best optimal energy EB
1 from R

points for this level.
2. In level p′ greater than 1, we use the best point

({ul}B
p′−1, {vl}B

p′−1, {hj}B
p′−1) in level p′ − 1 to construct R initial

points ({ul}0,s
p′ , {vl}0,s

p′ , {hj}0,s
p′ ). The s superscript refers to the

elements of the following random selection procedure,
representing the different points:

{ul}0,s
p′ =

{{ul}B
p′−1 ∪ {0}, s = 1,

{ul + αRans[ul ]}B
p′−1 ∪ {0}, 2 � s � R,

{vl}0,s
p′ =

{{vl}B
p′−1 ∪ {0}, s = 1,

{vl + αRans[vl ]}B
p′−1 ∪ {0}, 2 � s � R,

{hj}0,s
p′ =

{{hj}B
p′−1, s = 1,

{hj + αRans[hj]}B
p′−1, 2 � s � R.

(A6)

{ul}0,s
p′ or {vl}0,s

p′ is a p′-element set whose p′th element is zero. The
random number Rans[a] is the sth selection from a normal
distribution with average 0 and variance a2, i.e.,
Rans[a] = Norm(0, a2). We optimize these R initial points to
find the best point ({ul}B

p′ , {vl}B
p′ , {hj}B

p′ ) with the best energy
EB

p′ . The update parameter α was set to α = 0.6.
3. Repeat step 2 until p′ reaches the target level p.
4. Output all energies EB

p′ from level 1 to p.

APPENDIX B: COMPUTATION TIME

Here we give the analysis that leads to the conclusion in
the main text that the total computation time is O(p2). We
assume that the quantum part of the algorithm dominates the
time. This will be true for the foreseeable future. The MaxCut
cost Hamiltonian HC is defined on an n-vertex R-regular
graph, and a p-level QAOA and ab-QAOA are implemented
with optimization to find a target state. In our calculations
in the main text, R = 3. We denote the iterations needed for
convergence by Nite. In each iteration of the optimization in
our calculation, we need to calculate the expectation of the
problem Hamiltonian 〈HC〉 2p + 1 times to get gradients of
the input parameters. In both of these two QAOA, the gradient
of Ep (the energy in one iteration for the p level QAOA or
ab-QAOA) with respect to the ul ′ is

∂Ep

∂ul ′
= Ep({ul}′, {vl}, {h j}) − Ep({ul}, {vl}, {h j})

εg
,

{ul}′ = {u1, u2, . . . , ul ′ + εg, . . . }, (B1)

where εg is a small quantity. There are p ul , so
p Ep({ul}′, {vl}, {h j}) and one Ep({ul}, {vl}, {h j}) are needed.
As a result, 2p + 1 calculations of 〈HC〉 are needed.
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FIG. 13. Fits to the accuracy and infidelity curves for QAOA (top two rows) and ab-QAOA (bottom two rows). Rows 1 and 3 are for w3r
graphs, and rows 2 and 4 are for w3r graphs. The dashed lines in the four subplots represent p = p0[c − ln(1 − r)]2 or p = p0[c − ln(1 − F )]2,
which is equivalent to the fitting functions in the main text.

In a single calculation of 〈HC〉, one needs to measure nR/2
different ZZ terms of HC . |ψ f 〉 (either |ψ s

f 〉 or |ψab
f 〉 in the

main text) is prepared MZZ times to get an accurate expecta-
tion value for the ZZ term.

In the ab-QAOA, unlike the QAOA, knowledge of the Z
term is also needed to guide {h j} in the flowing iteration.
However, this does not require an additional measurement,
since if we have the value of 〈ZZ〉 measured in the compu-
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tational basis, we automatically also know 〈Z〉, as we now
show. Consider a single ZZ term, Zv1 Zv2 . It has a spectral
decomposition

Zv1 Zv2 = |0v1〉〈0v1 | ⊗ |0v2〉〈0v2 | − |0v1〉〈0v1 | ⊗ |1v2〉〈1v2 |
− |1v1〉〈1v1 | ⊗ |0v2〉〈0v2 | + |1v1〉〈1v1 | ⊗ |1v2〉〈1v2 |,

(B2)

where |1v1〉〈1v1 | ⊗ |1v2〉〈1v2 | is short for I ⊗ · · · ⊗
|1〉〈1|︸ ︷︷ ︸

v1

⊗ · · · ⊗ |1〉〈1|︸ ︷︷ ︸
v2

⊗ · · · ⊗ I, which is denoted as T v1v2
11 ,

so as for T v1v2
10 , T v1v2

01 , and T v1v2
00 . Once these four T operators

are measured, then 〈Z〉 can be obtained:

〈Zv1〉 = 〈
T v1v2

00

〉 + 〈
T v1v2

01

〉 − 〈
T v1v2

10

〉 − 〈
T v1v2

11

〉
,

〈Zv2〉 = 〈
T v1v2

00

〉 + 〈
T v1v2

10

〉 − 〈
T v1v2

01

〉 − 〈
T v1v2

11

〉
. (B3)

As a result, there are no additional measurements needed in
the ab-QAOA compared to the QAOA.

In one preparation of |ψ f 〉, the operator exp(−iγkHC ) is
applied p times and exp(−iβkH s

M ) or exp(−iβkH ab
M ) is applied

p times. The operator exp(−iγkHC ) can be decomposed into
three quantum gates while exp(−iβkH ab

M ) can be represented
by one, as shown in Fig. 10, so p(3nR/2 + n) quantum gates
are needed. In the meanwhile, for ab-QAOA, n Ry rotation
gates around the ŷ axis are needed for the starting state prepa-
ration from |0〉⊗n, and for the QAOA, n Hadamard gates are
needed.

In conclusion, there are

Ngate = Nite(2p + 1)MZZ
nR
2

[
p

(
3nR

2
+ n

)
+ n

]
(B4)

quantum gates for a p-level QAOA or ab-QAOA with full
optimization, Ngate ∼ O(Nite p2n2R2).

In our simulation, there are two kinds of initial points. One
kind is the randomly generated points in level 1, and the other
one is the points generated with the above outer loop in the
other levels. Since p∗ is always larger than 1 for r∗ = 0.99, we
focus on Nite when the level p � 2. In this case, the iterations
are similar among different graphs and between the QAOA
and ab-QAOA, as shown in Fig. 11. So we conclude that Nite is
the same constant for different levels and for both algorithms,
so Ngate ∼ O(p2n2R2). The additional classical cost for the
ab-QAOA is only a small constant. This is because essentially
the entire classical cost is in the optimization routine, which
does not depend on whether bias fields are included, since
these fields are not optimized over.

Of course this analysis assumes that there is no error cor-
rection. It also assumes that two-qubit gates can be applied to
any pair of qubits, thus avoiding the necessity of SWAP gates.
These considerations apply equally to QAOA and ab-QAOA,
so they should not affect the speedup that is defined in the
main text since it is a relative speedup. Similarly, R and n are
the same for the two algorithms, and the same reasoning may
be applied. For a given accuracy and problem size, only p is
different.

TABLE I. Fitting parameters p0 and c of QAOA and ab-QAOA
for w3r graphs and u3r graphs. ep0 and ec represent the standard
deviation errors. Top left entry in each table specifies accuracy (r)
or infidelity (F), algorithm, and graph type.

r for QAOA (w3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 0.4280 0.6223 0.7332 0.8023 0.9069 0.9443
ep0 0.0479 0.0514 0.0340 0.0592 0.0443 0.0925
c 0.1074−0.1276−0.2325−0.2635−0.3967 −0.3586
ec 0.0333 0.0430 0.0308 0.0562 0.0448 0.0953

r for ab-QAOA (w3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 0.1733 0.1758 0.1770 0.1796 0.1842 0.2392
ep0 0.4616 0.4285 0.4949 0.4619 0.4258 0.6381
c −0.2451−0.2796−0.2611−0.2788−0.2483 −0.6791
ec 0.2038 0.1906 0.2209 0.2076 0.1939 0.3310
F for QAOA (w3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 8.4398 10.1726 12.8145 18.5465 29.5196 35.3103
ep0 0.0034 0.0012 0.0023 0.0019 0.0017 0.0018
c 0.0340 0.0805 0.0881 0.0695 0.0485 0.0453
ec 0.0170 0.0060 0.0116 0.0095 0.0085 0.0089
F for ab-QAOA (w3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 0.5021 0.6129 0.7549 1.0054 1.5762 2.5342
ep0 0.1585 0.1335 0.1490 0.1112 0.0992 0.0551
c 1.0155 0.7984 0.6930 0.5899 0.5140 0.3716
ec 0.1192 0.1109 0.1373 0.1188 0.1321 0.0930

r for QAOA (u3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 1.3023 2.0753 2.4677 2.7788 3.0333 3.1562
ep0 0.0694 0.0246 0.0304 0.0917 0.0800 0.0937
c −0.5508−1.0162−1.1651−1.2412−1.2671 −1.2632
ec 0.2069 0.0288 0.0252 0.0600 0.0439 0.0475

r for ab-QAOA (u3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 0.0481 0.0448 0.0541 0.0565 0.0474 0.0478
ep0 0.0058 0.0053 0.0080 0.0070 0.0052 0.0054
c 2.4151 2.5535 1.9384 1.8957 2.3950 2.3987
ec 0.5815 0.5896 0.6777 0.5551 0.5354 0.5466
F for QAOA (u3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 1.2631 2.4719 3.3318 4.9315 5.8239 6.9639
ep0 0.1080 0.1576 0.2050 0.2623 0.3985 0.5160
c 1.1888 0.5537 0.4275 0.2897 0.2734 0.2436
ec 0.3418 0.1302 0.0932 0.0545 0.0593 0.0537
F for ab-QAOA (u3r) n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

p0 0.0496 0.0442 0.0519 0.0574 0.0490 0.0499
ep0 0.0067 0.0060 0.0093 0.0088 0.0067 0.0072
c 4.1400 4.5860 4.1717 4.0884 4.6724 4.7042
ec 0.6389 0.6792 0.8383 0.6831 0.6599 0.6857

APPENDIX C: NUMERICAL RESULTS FOR N = 10, 14, 18

This Appendix contains numerical results for both the w3r
and u3r graphs with n = 10, 14, 18. The same fitting functions
are used as those in the main text, and the fitting parameters
are tabulated in Appendix D. The scaling analysis of these
fitting functions will also be presented in Appendix D.

The results for n = 18 (brown triangles) in Figs. 12(c) and
12(d) are below those for n = 14 (purple triangles), as is also
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observed in Figs. 2 and 4. From our results in Figs. 4(a) and
12(c) and inspection of the local fields, it appears that there are
some special u3r graphs for which the ab-QAOA can find the
solutions to the MaxCut problems using only a very shallow
circuit depth. This creates the inversion with respect to n. In
any case, one must keep in mind that the cost function is the
energy, not the fidelity. A very low-lying excited state may
have little overlap with the true ground state. We confirmed
that the effect is mitigated by averaging over more graphs or
by increasing R, the number of starting points, so we do not
believe that there is anything very fundamental about it.

APPENDIX D: FITTING PARAMETERS

In Table I we list the fitting parameters defined in the main
text, which are computed using the scipy.optimize.curve_fit
function in python. The corresponding standard deviation er-
rors ep0 and ec are also listed. On average, the fitting functions
work better for the QAOA, where the fitting errors of p0 for
the u3r infidelity are a little bigger than those for the other
cases. Overall, the fitting errors in ab-QAOA are bigger. How-
ever, what we care about most are the fits for the accuracy,
which give the estimated p∗ in the speedup, and the errors
there are small.

We choose to fit all the points even though it might have
been preferable to leave out the results in level 1 when fitting
the results of Fourier strategy, since the R initial points are
randomly generated instead of using the information from the
last level. If we did leave the p = 1 points out, ep0 and ec in the
QAOA would decrease slightly. For the ab-QAOA, ep0 would

TABLE II. p∗ in speedup for w3r and u3r graphs.

w3r n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

standard QAOA 10 12 14 15 16 17
ab-QAOA 3 3 3 3 3 3

u3r n = 8 n = 10 n = 12 n = 14 n = 16 n = 18

standard QAOA 5 7 8 9 10 11
ab-QAOA 3 3 3 3 3 3

decreased a small amount but ec would increase significantly,
and there would be a noticeable deviation between the points
and the fitting curves. However, the main point about the
fitting is the extrapolation of the QAOA data, so this does not
affect any of our conclusions.

Using these fitting parameters and redefining the vertical
axes of Figs. 2 and 4 of the main text, we can collapse the
graphs for the accuracy and infidelity onto straight lines, as
shown in Fig. 13.

APPENDIX E: SPEEDUP PARAMETER P∗

In Table II, we list p∗ for the calculation of the speedup
S(n) shown in Fig. 5 in the main text. For the QAOA, p∗ is
obtained from the fitting function. For the ab-QAOA, p∗ is
obtained directly from the numerical simulation. For clarity
of the speedup, all p∗ are rounded to integers.
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